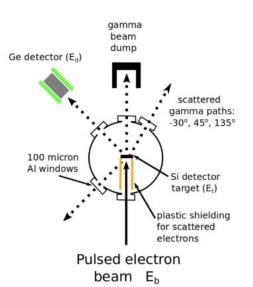
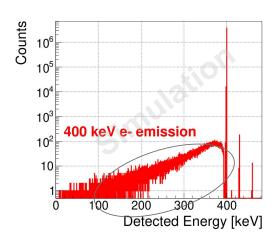
Detector System Discussion


Calibrations, Open Sources, Goop!, 3rd Mount, Timing Detector

TUNL brem. measurement plan

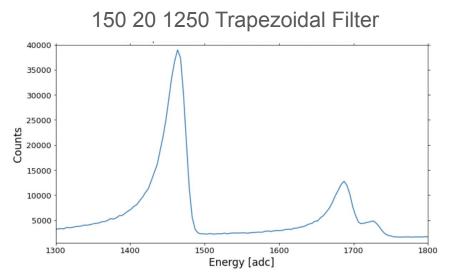
Calibrations and Detector Qualification

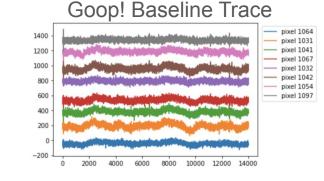

- Electron energy calibration
 - Some requirements for a are already met
 - Preliminary stability studies look good for both detectors
 - Offset: statistical uncertainty ~0.3 keV, but systematic contribution of 0.37 keV from source mylar thickness uncertainty
- Tail characterization
 - NCSU/TUNL e⁻ accelerator for detailed measurement of bremsstrahlung
 - Direct measurement with open sources
 - New simulation studies by Jin

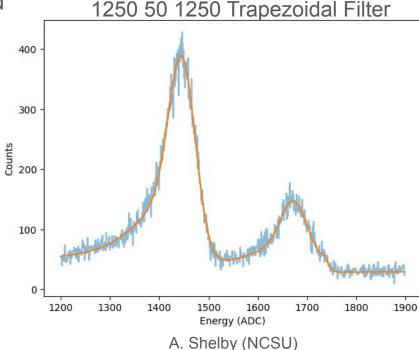
	•		
Specification for	$\Delta a = 3 \cdot 10^{-5} \text{ in Nab}$	$\Delta A = 3 \cdot 10^{-5}$ in pNAB	$\Delta b = 5 \cdot 10^{-4} \text{ in Nab}$
gain factor (Δg/ g)	fit parameter	0.18% 🗸	fit parameter
Offset E_0 (ΔE_0)	0.3 keV	0.2 keV	0.03 keV
nonlinearity (ΔE _{max})	1.5 keV ✔	0.3 keV	0.03 keV
peak width (Δw)	1 keV 🗸	10 keV ✔	3 keV 🗸
tail amplitude (Δt of peak)	10 ⁻⁴	0.024	10 ⁻³

Open Sources

- We need the open sources to measure the electron response function
 - From the parametric studies, the fraction of events in the tail (f) needs to be known to the relative precision of 1% (σ_f/f)
- 2022-2023: "In-house" preparations of the open sources using 0.5 um Mylar backing foil (single layer) for ¹¹³Sn, ¹⁰⁹Cd, and ²⁰⁷Bi
 - Thinner graphite foils are on-hand as well
- 2025: LANL collaborators have performed the vacuum & cryogenic tests to study their stability
 - And they are stable! (113Sn source still at LANL)




2026 needs:


- New calibration sources and source-holders should be fabricated (graphite and mylar thin film sources for 113Sn, 131Ce)
- Existing 207Bi and 139Cd sources should probably be checked for stability under pumpdown and cooling
- New six-source holder for CAL2702's should be produced
- Additional 207Bi sources are needed: 2 more are needed to populate a full six-source holder, and a stronger 207Bi source is needed for timing bias analysis (see final 2 slides)
- Probably CAL2702's should be characterized for density distributions assuming they will still be needed for some of our high precision reconstruction work
- IDP data taken in test stand (especially for lower detector?) bias scan data taken and some preliminary analysis available, but lower detector looks scary

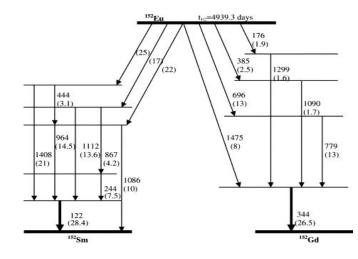
Lower Detector (Goop!) Noise

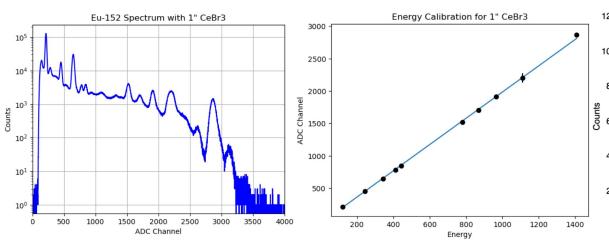
- Low frequency correlated noise
- Affects energy extraction
- Shorter filters can improve energy extraction
- Goop! should be removed and characterized
- Replace with a pristine detector that will also need be characterized

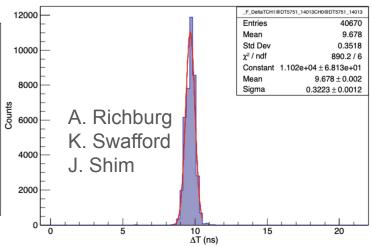
3rd Mount

Status

- Atmosphere-side electronics assembled
- Working on closing FET vacuum volume
- Amplifier cables + thermometry ordered
 - Should arrive in new year
- Amplifier power distribution panel in the works
 - Likely completed in Mar/April

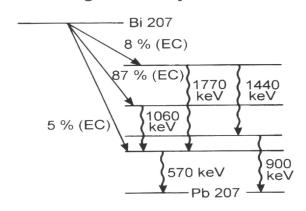

Next steps


Minichamber 2.0?



Timing detector

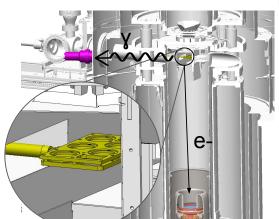
- Nab spec: timing bias Δt_{p-e} < 0.3 ns. Timing offsets from different particle types, hit locations. How to correct?
 - CeBr3 detector has been characterized with gamma-gamma coincidence methods to ~few keV and FWHM < 300 ps coincidence window
 - Tested with ⁶⁰Co, ¹⁵²Eu, and ²²Na at EKU, and ¹¹³Sn and ²⁰⁷Bi at ORNL



Addition: we need to order high activity sources!

Timing detector

- Use timing detector to build database of pulse shapes (timing offsets) as function of particle types, hit locations, detector settings.
 - e- waveform start determined from fast detection of coincident γ
 - Measure offsets directly using sources with fast "timing detector" → benchmark NESSE
- Measure ex-situ (better control) and in-situ (match Nab operating conditions)


Ex-situ goals for 2026

- Assemble system and perform single pixel demonstration
 - a. Bias scans, temp scans
- Integrate 2D motion and collimation
 - Pixel-by-pixel and interpixel timing offsets

Ex-situ method

In-situ method

In-situ goals for 2026

- Produce simulation for electron flight paths and timing for ²⁰⁷Bi as a function of energy and angle
- Single pixel demonstration with the CAEN DT5751. Begin multiple pixel coincidences